skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rabenorosoa, Kanty"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Concentric tube robots (CTRs) have drawn significant research attention over the years, particularly due to their applications in minimally invasive surgery (MIS). Indeed, their small size, flexibility, and high dexterity enable several potential benefits for MIS. Research has led to an increasing number of discoveries and scientific breakthroughs in CTR design, fabrication, control, and applications. Numerous prototypes have emerged from different research groups, each with their own design and specifications. This survey paper provides an overview of the state-of-the-art of the mechatronics aspects of CTRs, including approaches for the design and fabrication of the tubes, actuation unit, and end effector. In addition to the various hardware and associated fabrication methods, we propose to the research community, a unifying way of classifying CTRs based on their actuation unit architecture, as well as a set of specification details for evaluation of future CTR prototypes. Finally, we also aim to highlight the current advancements, challenges, and perspectives of CTR design and fabrication. 
    more » « less
  2. This review demonstrates that 4D printing constitutes a key technology to enable significant advances in microrobotics. Unlike traditional microfabrication techniques, 4D printing provides higher versatility, more sophisticated designs, and a wide range of sensing and actuation possibilities, opening wide new avenues for the next generation of microrobots. It brings disruptive solutions in terms of variety of stimuli, workspaces, motion complexities, response time, function execution, and genuinely 3D microrobots. This review brings to light how soft and smart materials directly printed in 3D are particularly well suited for microrobotics requirements. This review gives an overview of 4D printing in microrobotics, highlighting advanced microrobotics requirements, fabrication methods, used smart materials, activation techniques, recent advances in the microrobotics field, and emerging opportunities. 
    more » « less